Cyclin G1 expands liver tumor-initiating cells by Sox2 induction via Akt/mTOR signaling.

نویسندگان

  • Wen Wen
  • Tao Han
  • Cheng Chen
  • Lei Huang
  • Wen Sun
  • Xue Wang
  • Shu-Zhen Chen
  • Dai-Min Xiang
  • Liang Tang
  • Dan Cao
  • Gen-Sheng Feng
  • Meng-Chao Wu
  • Jin Ding
  • Hong-Yang Wang
چکیده

Recurrence and chemoresistance of liver cancer has been attributed to the existence of liver tumor-initiating cells (T-ICs). It is important to decipher the molecular mechanism for acquisition of drug resistance and to design combinatorial therapeutic strategies. Cyclin G1 has been shown to play a pivotal role in initiation and metastasis of hepatocellular carcinoma. In this study, we found that enhanced cyclin G1 expression was associated with drug resistance of hepatoma cells and higher recurrence rate in hepatocellular carcinoma patients. Expression of cyclin G1 was elevated in liver T-ICs and closely correlated with the expression of liver T-IC markers. Forced cyclin G1 expression remarkably enhanced self-renewal and tumorigenicity of hepatoma cells. Cyclin G1 overexpression dramatically upregulated the expression of Sox2 both in vitro and in vivo, which was impaired by chemical inhibitors of Akt/mTOR signaling. Furthermore, blockade of Akt/mTOR signaling or interference of Sox2 expression suppressed cyclin G1-enhanced self-renewal, chemoresistance, and tumorigenicity of hepatoma cells, indicating that cyclin G1 expands liver T-ICs through Sox2 induction via Akt/mTOR signaling pathway. These results suggest that cyclin G1-induced liver T-IC expansion contributes to the recurrence and chemoresistance of hepatoma, and cyclin G1 may be a promising biomarker for individualized therapy of hepatocellular carcinoma patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapeutics Insights Cyclin G1 Expands Liver Tumor-Initiating Cells by Sox2 Induction via Akt/mTOR Signaling

Recurrence and chemoresistance of liver cancer has been attributed to the existence of liver tumor-initiating cells (T-ICs). It is important to decipher the molecular mechanism for acquisition of drug resistance and to design combinatorial therapeutic strategies. Cyclin G1 has been shown to play a pivotal role in initiation and metastasis of hepatocellular carcinoma. In this study, we found tha...

متن کامل

Sex determining region Y-box 2 inhibits the proliferation of colorectal adenocarcinoma cells through the mTOR signaling pathway.

Sex determining region Y-box 2 (SOX2), is a high mobility group box transcription factor involved in the maintenance of pluripotency and the self-renewal of embryonic and neuronal stem cells, which also plays differential roles in the cell proliferation of several tumors. However, its role in colorectal adenocarcinoma cell proliferation and the underlying mechanisms remain unclear. The mammalia...

متن کامل

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment...

متن کامل

Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells

Matrix stiffness as an important physical attribute of extracellular matrix exerts significant impacts on biological behaviors of cancer cells such as growth, proliferation, motility, metabolism and invasion. However, its influence on cancer stemness still remains elusive. Here, we explore whether matrix stiffness-mediated effects on stemness characteristics occur in HCC cells. As the substrate...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2013